



### **SPCD 2016**

#### NOORDWIJK

12 / 10 / 2016

## EVALUATION OF A NEW CERAMIC FOR BOTH LOW AND HIGH VOLTAGE APPLICATIONS



#### **AIM OF THE WORK**

DRIVING FORCE : MINIATURIZATION

- SIZE REDUCTION
- COMPACITY INCREASE

BUT HEAT DISSIPATION IS MORE DIFFICULT

 $\rightarrow$  2 Solutions to consider :

- INCREASE COMPONENT'S RELIABILITY (to propose components with the same reliability despite of a higher working temperature)

- REDUCE COMPONENT'S LOSSES



#### DIELECTRIC CHARACTERISTICS OF CERAMIC MATERIALS

| NPO DIELECTRICS                                                                   | <b>X7R DIELECTRICS</b>                      |
|-----------------------------------------------------------------------------------|---------------------------------------------|
| LOW DF $\rightarrow$ NO HEATING                                                   | HIGH DF                                     |
| NO CAPACITANCE CHANGE UNDER<br>VOLTAGE                                            | BIG CAPACITANCE UNDER VOLTAGE               |
| NO CAPACITANCE CHANGE WITH<br>TEMPERATURE                                         | FAIR CAPACITANCE CHANGE WITH<br>TEMPERATURE |
| LOW DIELECTRIC CONSTANT →<br>ONLY SMALL CAPACITANCE VALUES<br>CAN BE MANUFACTURED | HIGH DIELECTRIC CONSTANT                    |



#### CONCLUSION ON THE STATE OF THE ART



- NOR NPO CERAMIC DIELECTRICS, NOR X7R MATERIALS ARE ABLE TO DO THE JOB AT BEST

- NECESSARY TO FIND A MATERIAL WHICH COMBINES THE BEST OF BOTH FAMILIES WITH A SPECIAL EMPHASIS ON :
  - LOW DF TO MINIMIZE EQUIPMENT HEATING
  - FAIR DIELECTRIC CONSTANT AND / OR MATERIAL COMPATIBLE WITH A HIGH DIELECTRIC FIELD TO ACHIEVE ENOUGH CAPACITANCE UNDER WORKING CONDITIONS (TEMPERATURE, VOLTAGE, FREQUENCY)



#### **MATERIAL CHOICE** $\rightarrow$ .C48X. RANGES

CERAMIC DIELECTRIC WITH A **DIELECTRIC CONSTANT** OF **450** AND THE HEREBELOW CHATACTERISTICS

| PARAMETER                            | PERFORMANCE                |
|--------------------------------------|----------------------------|
| Dissipation factor (DF) 1khz, 1Veff  | < 5.10 <sup>-4</sup>       |
| Typical DF at 400Hz, 1Veff           | < 5.10 <sup>-4</sup>       |
| Insulation Resistance (20°C, 500Vdc) | > 20 000 MΩ or 1 000 MΩ.μF |
| Dielectric withstanding voltage      | > 1,4Ur                    |
| Temperature coefficient              | -2 200 ± 500 ppm/°C        |
| dV/dt withstanding pulses            | Up to 10kV/µs              |



#### **MAIN PERFORMANCES**



#### Typical capacitance change vs applied voltage C48X range



« Heating performances » in comparison with X7R materials

Variation of the C48X capacitance when a DC bias is applied



#### WHAT CAN BE ACHIEVED ?

- MEDIUM K (=450) LOWER THAN K OF X7R MATERIALS
- MATERIAL ABLE TO WITHSTAND HIGHER ELECTRICAL FIELDS THAN X7R
- $\rightarrow$  CAPACITANCES SLIGHTLY LOWER THAN X7R AT 1Vcc



Capacitance value in the same volume Size 3333, 5000V

BUT

E TECHNOLOGIES

# E)

#### CAPACITANCE UNDER NOMINAL VOLTAGE

- VERY LOW CAPACITANCE DECREASE UNDER VOLTAGE FOR C48X RANGES
- BIG CAPACITANCE DECREASE FOR X7R UNDER VOLTAGE (UP TO 60%)

→ CONSEQUENCE : SAME CAPACITANCE UNDER WORKING CONDITIONS FOR C48X THAN FOR X7R AND NO HEATING (NO ENERGY DISSIPATION)

= NICE SOLUTION FOR POWER APPLICATIONS



#### **A FEW HIGH-REL EXAMPLES**

| Electrical<br>characteristics | 500nF 400V<br>400Hz application<br>chips size 6560 | 1μF 500V<br>Stack of 5 chips size<br>4040 | 6,8nF 2000V<br>chips size 1812 | 100nF 1600V<br>chips size 40440 |
|-------------------------------|----------------------------------------------------|-------------------------------------------|--------------------------------|---------------------------------|
| Presentation                  | Varnished radial<br>lead                           | DIL leads for<br>through hole<br>mounting | Single SMD chips               | Chips                           |
| Application                   | Motor regulation                                   | Missile                                   | Lightning protection           | Charge/Discharge                |







#### **NPO RANGES EXTENSION**



- VERY LOW DF (< 5.10<sup>-4</sup>)
- VERY LOW CAPACITANCE VARIATION WITH VOLTAGE APPLIED

 $\rightarrow$  IDEA IS TO EXTEND NPO RANGES

- FOR SMALL SIZES (DOWN TO 0603)
- FOR MEDIUM VOLTAGES (100V TO 1kV)

 $\rightarrow$  AN INCREASE OF THE ALLOWABLE CAPACITANCES VALUES BY A FACTOR 3 TO 4 IS EXPECTED



#### **SPACE EVALUATION**



#### WITH THE HELP OF THE FRENCH AGENCY = CNES

- 2 MAIN ACTIONS CONDUCTED IN PARALLEL
- BIG SIZES HIGH VOLTAGE PARTS (POWER APPLICATIONS)
- SMALL SIZES MEDIUM VOLTAGES PARTS (EXTENSION OF NPO RANGES)
- EVALUATION BASED ON ESCC 2 263 000



#### **BIG SIZES – HIGH VOLTAGE PARTS EVALUATION (A)**

- CHIPS SIZE FROM 1812 TO 6560
- RATED VOLTAGE FROM 200V TO 5kV
- TERMINATIONS
  - POLYMER TERMINATION UP TO SIZE 4040
  - SMD CONNECTIONS FOR BIGGEST SIZES
  - (5440 AND 6560)
  - THROUG HOLE MOUNTING
    - MOLDED CAPACITORS
    - DIPPED CAPACITORS -







#### MAIN FEATURES OF (A)

- E
- EVALUATION BASED ON ESCC 2 263 000 BUT
- ADDITIONNAL TESTING
  - 500 THERMAL SHOCKS (-55°C / +125°C)
  - 100 THERMAL SHOCKS ON MOUNTED PARTS FOLLOWED BY 1000 HOURS LOW VOLTAGE HUMIDITY TEST
  - VIBRATIONS AND SHOCKS
  - CORONA TESTS FOLLLOWED BY LIFE TESTS CONDUCTED IN PARALLEL ON :
    - PARTS INSIDE THE MAIN VALUES DISTRIBUTION
    - PARTS OUTSIDE THE MAIN VALUES DISTRIBUTION (IF ANY)
  - HEATING UNDER ALTERNATIVE CURRENT/VOLTAGE CONDITIONS IN PARALLEL WITH NPO AND X7R PARTS



#### SMALL SIZES – MEDIUM VOLTAGE PART PRE-EVALUATION (B)

- CHIPS SIZE FROM 0603 TO 1210
- RATED VOLTAGE FROM 100V TO 1kV
- TERMINATIONS :
  - CLASSICAL TERMINATION SNPB 60/40 ON NICKEL BARRIER
  - POLYMER TERMINATION



#### MAIN FEATURES OF (B)

- EVALUATION NOT FULLY PERFORMED ACCORDING TO ESCC 2 263 000
- MAIN CHARACTERIZATIONS
  - HOT INSULATION RESISTANCE (NOW NO MORE REQUIRED BY ESCC3009)
  - CAPACITANCE VARIATIONS WITH TEMPERATURE (NOW NO MORE REQUIRED BY ESCC3009)
  - 100 THERMAL SHOCKS ON MOUNTED PARTS FOLLOWED BY 1000 HOURS LOW VOLTAGE HUMIDITY TEST (85°C, 85% RELATIVE HUMIDITY, 1,5V)
  - VOLTAGE STEP-STRESS



#### **EVALUATION STATUS**

- E)
- PARTS MANUFACTURING ON GOING (SHOULD BE FINISHED END OF NOVEMBER)
- TESTING WILL START END 2016 AND SHOULD BE COMPLETED 2<sup>nd</sup> HALF 2017
- ANY QUESTION ?



#### CONTACT





93 rue Oberkampf 75540 PARIS Cedex 11 France Tel : + 33 (0)1 49 23 10 00 Fax : + 33 (0)1 43 57 05 33 info@exxelia.com

www.exxelia.com

